START

MEETING MINUTES

Subject: Expedited Response Action Weekly Interface

TO: Distribution		BU	[LDING: 450 Hills	24
FROM: W. L. Johnson		CHAIR	MAN: GW. L. Johnso	in
Dept-Operation-Compone Environmental Engineer		Shift Day	Meeting Dates November 9, 1992	Number Attending 14
M. V. Berriochoa H. D. Downey* J. K. Erickson* E. D. Goller J. W. Green* F. W. Gustafson* M. C. Hagood* W. F. Heine	B3-30 L4-92 A5-19 A5-19 H6-04 H6-04 B2-35	D. A. L. Gad P. S.	aver Day* Einan* Faulk*	-01
G. C. Henckel* R. G. McLeod P. M. Pak* J. K. Patterson* D. L. Sickle J. T Stewart R. K. Stewart* P. J. Valcich T. M. Wintczak EDMC Field File Custodian ERAG Route	H4-55 A5-19 A5-19 L4-92 L4-92 A5-20 A5-19 H6-04 L4-92 H4-22 H4-55	Ecolog J. Don L. Gol D. Gos R. L.	gy fa nnelly* Idstein swami Hibbard illips* Teel	ıΧ

*Attendees

r ste


18.60

The weekly interface meetings on the expedited response actions (ERAs) was held to status the ERAs for the U.S. Department of Energy, Richland Field Office and the regulators. The meeting was conducted in accordance with the attached agenda. Actions were formally reviewed and the attached action item list was updated. The weekly report is also attached.

This meeting focused on a detailed review of CCl_4 activities, the proposed N-Spring ERA, and the Sodium Dichromate Disposal Site EE/CA review schedule.

Attachments:

- 1. Agenda
- 2. Action Item List
- 3. Decisions, Agreements & Commitments
- 4. Expedited Response Action Weekly Report, 11/06/92
- 5. CCl Presentation
- 6. N-Spring Presentation
- 7. Sodium Dichromate EE/CA review schedule

WEEKLY ERA INTERFACE AGENDA

SUBJECT: STATUS OF THE EXPEDITED RESPONSE ACTIONS

DATE: November 9, 1992

- GENERAL ISSUES
 - ERA Interface Action Item review
- INDIVIDUAL PROJECT STATUS
 - 200-W Carbon Tetrachloride briefing
 - N-Spring briefing
 - Sodium Dichromate o EE/CA review
- OTHER ISSUE

- - - -

1.11,13

* 1

- SUMMARY OF ACTION ITEMS
- SIGN-OFF ON ANY DECISIONS, AGREEMENTS, OR COMMITMENTS

EXPEDITED RESPONSE ACTION INTERFACE MEETING

-ACTION ITEMS-November 9, 1992

O.	RG	Δ	N	T	7	Δ	T	T	ΛI	N
-			11	_	_	,		_	•	

ACTION ITEM

WHC

WHC will provide RL, EPA, and Ecology copies of the GPR reports for Riverland, and Pickling Acid ERA sites when they become available. (open) North Slope and Sodium Dichromate reports have been provided.

WHC

Provide description of the best method to incorporate 618-10 into 618-11 ERA. (open)

EPA/Ecology/RL

Assess the feasibility of a complete parallel review for the Sodium Dichromate EE/CA and provide a decision by 11/9/92. (closed)

WHC

1.15

, T

ج. و

-

Nuclear Safety briefing on the approach to be used for 618-11 ERA when determined. (open)

RL

On November 9, 1992, RL will provide an . N-Springs discussion. (closed)

WHC

WHC will set up a meeting to preview the video tapes taken at the Sodium Dichromate, Riverland, and North Slope ERA Sites. (open)

WHC

WHC will obtain copies of the most recent ERA fact sheets for review. (open)

WHC

WHC will prepare a draft response for RL's and Ecology's use in responding to the Oregon Hanford Nuclear Waste board letter. (open)

WHC

WHC will contact their legal department to gather information on what is required by the GSA to excess government property after a ROD is reached. (closed) Legal was contacted and was not able to provide black & white guidance. They are continuing to look into this issue.

WHC

WHC will provide EPA with a copy of the field logbook for the Riverland ERA sampling activities. (closed) Copy provided to Dennis Faulk on 11/5/92.

.

EXPEDITED RESPONSE ACTION INTERFACE MEETING

-DECISIONS, AGREEMENTS, & COMMITMENTS-November 9, 1992

DECISIONS:		•
AGREEMENTS:	Nothing of any synificance.	
COMMITMENTS:		•
	DOE Representative	• • • • • • • • • • • • • • • • • • • •
	EPA Representative ECOLOGY Representative WHC Representative	

1.7

TOPICS

- General Goals and Schedule
- Operations
- Well Field Development
- Site Characterization

FY-93 ERA OBJECTIVES

- Increase Extraction Rates
 - Continuous (or optimal) Operations
 - Increased Extraction Capacity
 - Well Field Development
- Identify and Integrate Cheaper Forms of Extraction,
 Treatment, and Characterization
 - Onsite Treatment Study
 - Passive Extraction
 - Cheaper Access

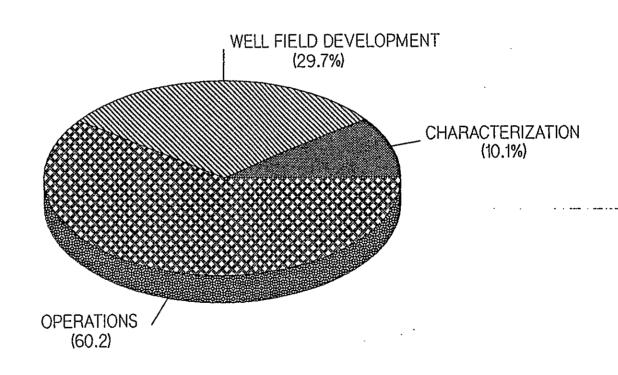
200 WEST AREA CC14 ERA

OPERATIONS

- . TASK I: PROJECT PLANNING
- . TASK 2: Z-IA/Z-18 OPERATIONS
- . 2a PHASE I OPERATIONS (24 HOUR OPERATIONS 500 CFM)
- . 26 PHASE II OPERATIONS (UPGRADE SYSTEM 1000 CFM)
- . TASK 3: Z-9 OPERATIONS
- . 3a: LEASED SYSTEM
- . 3b: Z-9 NEW SYSTEM
- . TASK 4: ONSITE TREATMENT STUDY
- . TASK 5: REPORTING

WELL FIELD EVALUATION/ENGINEERING

- . TASK 1: PROJECT PLANNING
- . TASK 2: AIR FLOW MODELLING
- . TASK 3: WELL FIELD TESTING *
- . TASK 4: BASELINE MONITORING
- . TASK 5: EXTRACTION WELL INSTALLATION
- . TASK 6: CONE PENETROMETER EXTRACTION WELL INSTALLATION X
- . TASK 7: WELL REMEDIATION
- . TASK 8: GW SAMPLING
- . TASK 9: REPORT WRITING


CHARACTERIZATION

- . TASK 1: PROJECT PLANNING
- . TASK 2: SOURCE INVESTIGATION
- . TASK 3: SURFACE INVESTIGATION *
- . TASK 4: EFFLUENT PIPELINE INTEGRITY
- . TASK 5: DRILLING & SAMPLING *
- . TASK 6: CONE PENETROMETER *
- . TASK 7: REPORT WRITING

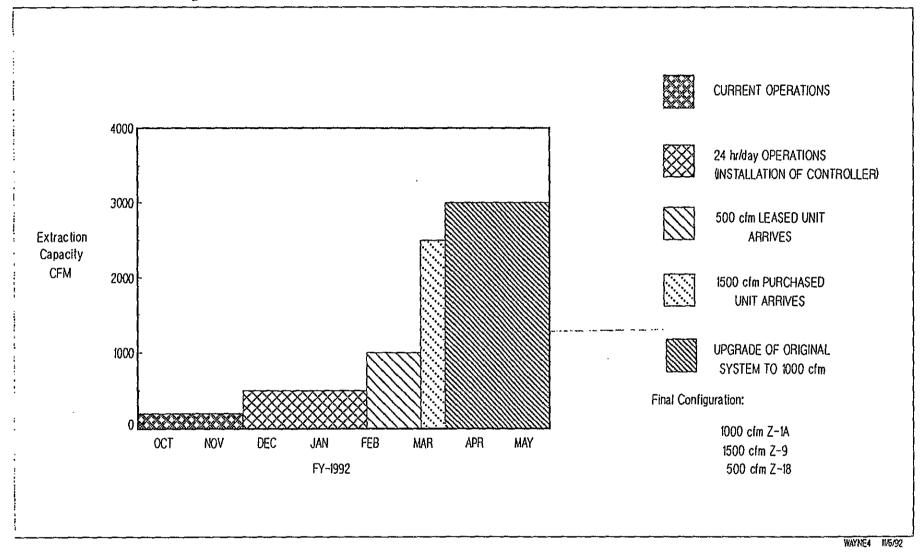
1992 1993 Oct Nov Jan Feb Mar Apr May Jun Aug Sep FY 91 WORK ☆ FY A PLANING ORDER PLAN V DEWET REPORT PRIOG REPORT & FY 94 WORK PLAN (7) FY 95 PLANNING · TO WORK PLAN V LETTER REPORT EVAL REPORT REPORT T LETTER REPORT TY FY 93 WORK PLAN FY SH WORK PLAN (3 TO REPORT V CONCEPT'JHODEL REPORT CHARACTERIZATION REPORT (Project: MH3WERA1 Date: 9 Nov 92 08:20 200 WEST AREA CCI4 ERA Page: 1 Drawn by: Steve J. Sakey 6-3092/H4-55/450 Hills

* = VOC-ARID ID LEVERAGED

200 WEST CARBON TETRACHLORIDE ERA FY 1993 FUNDING ALLOCATION

MH3FUNO4 11/5/92

LEVERAGING WITH THE VOC-ARID ID


- Onsite Treatment Options
- Extraction Wells
- Characterization Wells
- Well Field Enhancement

6 1 1 2 6 4 2 1 1 1 6

OBJECTIVES

- INSTALL 2 NEW VES UNITS AND EXPAND EXIST VES TO 1000 CFM
- ESTABLISH EXTRACTION AT Z-9 AND INCREASE PRODUCTION FROM Z-1A AND Z-18
- **MAXIMIZE PRODUCTION (HYGRADE THE WELLFIELD)**
- ESTABLISH PRODUCTION ACCOUNTABILITY BASED ON MEASUREMENT OF OPERATING EFFICIENCY (SCHEDULED VS ACTUAL)
- DETERMINE FEASIBILITY OF ON-SITE TREATMENT/DESTRUCTION OF CARBON TETRACHLORIDE

CC4 VES OPERATION CAPACITY

7 1 1 1 2 3 1 5 8

VES PRODUCTION BASED ON CAPACITY AND CONCENTRATION

CO	NC	EN	TR	TA	<u>ION</u>
· · · · · · · · · · · · · · · · · · ·					

100 PPM

1000 PPM

CAPACITY

500 CFM

28 LBS/DAY

280 LBS/DAY

1000 CFM 57 LBS/DAY

570 LBS/DAY

2500 CFM

141 LBS/DAY

1410 LBS/DAY

3000 CFM 170 LBS/DAY

1700 LBS/DAY

FY93 SITE CHARACTERIZATION

200 WEST AREA CARBON TETRACHLORIDE EXPEDITED RESPONSE ACTION
VOLATILE ORGANIC COMPOUNDS - ARID INTEGRATED DEMONSTRATION

Virginia Rohay

Westinghouse Hanford Geosciences

r . A.

November 9, 1992

PRIMARY OBJECTIVE

Refine the conceptual model of the site

- optimize removal of the carbon tetrachloride
- aid development and testing of new technologies

OTHER OBJECTIVES

Monitor performance of remedial actions

10

1 - 3. PA Provide samples to support technology demonstrations

Demonstrate and use new characterization and monitoring technologies

REFINE CONCEPTUAL MODEL OF THE SITE

Nature and Extent of Contamination

Determine the identity, phase, concentration, and current distribution of the individual contaminants.

Information is fundamental for identifying technology needs and for designing effective remedial actions.

Preferential Transport Pathways and Rates

Needed for both the unsaturated zone and unconfined aquifer.

Requires defining the hydrogeologic model (identifying the physical, chemical, and microbiological parameters of the subsurface that affect transport and on describing the spatial variability of these parameters).

Supports predictive modeling of the unsaturated zone.

Behavioral Characteristics of the Wastes

4

FF. 2

Define the physical, chemical, and microbiological properties of the carbon tetrachloride, the co-contaminants, and mixtures that affect their transport, sorption, and natural degradation.

Supports predictive modeling and identification of technology needs.

STRATEGY

MAXIMIZE USE OF FIELD SCREENING METHODS AS APPROPRIATE

MAXIMIZE USE OF EXISTING DATA AND WELLS

FOCUS DATA COLLECTION ON SPECIFIC CONTAMINANTS OF CONCERN.

USE "OFF-THE-SHELF" TECHNOLOGY AS APPROPRIATE, IN CONJUNCTION WITH THE DEMONSTRATION OF NEW TECHNOLOGIES

FIELD INVESTIGATION TASKS

SOURCE TERM CHARACTERIZATION

- Evaluate effluent pipeline integrity
- Investigate source of secondary groundwater maximum
- Assess artificial recharge

CONDUCT SOIL GAS SURVEYS

- Map lateral distribution of VOC
- Estimate VOC vapor flux for soils
- Map vertical distribution of VOC

CONDUCT GEOPHYSICAL SURVEYS

CONDUCT EXISTING WELL INVESTIGATIONS

- Borehole geophysical logging
- Evaluate integrity of old wells
- Sample selected wells

CONDUCT NEW WELL INVESTIGATIONS

- Crib wells
- Deep groundwater monitoring well
- Chemical, physical, microbiological analyses

SAMPLE GROUNDWATER

. .

LEVERAGING ACTIVITIES

ERA and VOC-Arid ID site characterization programs merged

- to maximize efficient use of time and resources
- to ensure that each activity and resulting product achieves maximum usefulness to both programs

ERA and VOC-Arid ID share costs

--

FY93 WELLFIELD DEVELOPMENT

200 WEST AREA CARBON TETRACHLORIDE EXPEDITED RESPONSE ACTION

Virginia Rohay

r 2, 2

ř,

Westinghouse Hanford Geosciences

November 9, 1992

OBJECTIVES

Define parameters of the present wellfield concentrations of VOC

Provide guidance to optimize VOC extraction by the active vapor extraction system

Develop new mechanisms to enhance the passive extraction of VOC

Provide supplemental data for site characterization and safety assessments

ACTIVE VAPOR EXTRACTION SYSTEM STRATEGY

Encompasses well placement, target horizons, and pumping rates and durations

- Short-term extractions tests to help determine mass flux, flow at vacuum, and distribution and concentration of carbon tetrachloride plumes
- Characterization sampling of extracted soil gas to provide understanding of the presence and concentrations of the co-contaminants not measured by the system detectors
- Airflow pathways study to understand and control airflow in the subsurface
 - Optimize extraction at each carbon tetrachloride disposal site

Evaluate production data
Determine radii of influence
Locate additional wells and intervals

7.

Weekly Report, Week Ending November 6, 1992 EXPEDITED RESPONSE ACTIONS Technical and Management Contact - Wayne L. Johnson, 376-1721 Environmental Division

North Slope Expedited Response Action - Forty five shallow characterization holes have been sampled completing the initial characterization at a number of locations. The cultural resources personnel have indicated that sampling may be performed at homestead cisterns and military sites. Initiated research into the topic of previously issued records of decision for the release of large areas of land.

<u>Pickling Acid Crib Expedited Response Action</u> - On schedule waiting for regulator comments on the project and sampling plans. The geophysical report is in the clearance process.

<u>Riverland Railroad Site Expedited Response Action</u> - Sampling was completed with no field indications of radioactivity in excess of natural background. Additional geophysical investigation of the tile field will be performed during the week of Nov. 9, 1992 to clarify the location.

Sodium Dichromate Expedited Response Action - The Sodium Dichromate ERA Proposal is ready for parallel review between RL, EPA, Ecology, and the Public if RL will concur. A decision on the approach will be made on November 9, 1992, during major comment resolution between the regulators, RL and DOE-HQ.

N-Springs Expedited Response Action - WHC has provided the N-Springs ERA project plan to DOE for transmittal to EPA and Ecology. DOE informally transmitted the document to the regulators.

618-11 Burial Ground Expedited Response Action - The PNL Photo Lab and the National Photography Intelligence Center were enlisted to locate historical aerial photos. Awaiting a plot plan to assist the National Center in their search. Also working with PNL mapping in search of 1962-67 photos.

Transportation/Packaging were contacted to help identify transportation issues related to waste translocation. The fundamental input into the whole process is what wastes will be moved and their destination. Unfortunately, packaging requirements and design are quite specific to the payload. There appears to be very little work applicable to moving excavated nuclear wastes. The establishment of an approved transportation system will likely take considerable time and is dependent on the potential impact of the transported material. Retrieval methodology, waste acceptance and storage criteria will also impact the process.

Obtained a copy of a document entitled, "Engineering Assessment of Low-Level Liquid Disposal Caissons at 618-11" and an aerial photograph of the caissons.

Safety Documentation is providing feedback regarding the perspective of project scope and objectives. This will aid in focusing project resources.

ERA WEEKLY REPORT CONTINUED

Carbon Tetrachloride Expedited Response Action -

200 West Area ${\rm CCl_4}$ Production Information

Operational Date	Disposal Facility	Amount of CCl ₄ Removed (1b)	Average CC1 ₄ Conc. (ppm)	Total Operational Time (hr)	Average Flowrate (SCFM)
8/13 - 8/19	216-Z-1A	65	420	42	160
8/19 - 8/25	216-Z-1A	125	. 583	47	190
8/26 - 9/3	216-Z-1A	79.34	459	32	210
9/3 - 9/9	216-Z-1A	21.3	, 580	9	175
9/10 - 9/16	216-Z-1A	73.82	560	36.5	175
9/17 - 9/23	216-Z-1A	66	500	36.3	150
9/24 - 9/30	216-Z-1A	77.3	661	30	158
10/1 - 10/7	11	132.9	1 858	38.3	166
10/7-10/13	II	138.63	1019	44.75	136
10/15-10/21	11	140.7	924	45.5	138
10/21-10/27	18	63.0	765	24	144
10/28-	11	108.00	1000	24.75	175
Totals		1752.03	694	410.1	165

^{*} Includes amounts collected before August 13, 1992.

An N-Springs ERA must be part of an overall 100-N Area environmental response strategy that must accomplish, at a minimum, three major tasks:

- 1. Reduce contaminant flux to the Columbia River through 100-N Area springs and seeps.
- 2. Control sources of groundwater contamination from 100-N Area waste sites.
- 3. Treat groundwater contaminated by 100-N Area operations.

RL's N-Springs ERA focus: Reduce contaminant flux through N-Springs.

GOAL

To reduce or eliminate the migration of strontium 90 into the Columbia River through N Springs.

OPTIONS

- No action
- Vertical barriers (slurry, grout, freeze walls)
- Pump & Treat (ion exchange, reverse osmosis, chemical precipitation)
- Hydraulic controls
- Permeable treatment beds
- Combination of above alternative

21153 4 6 7 1 8 6

N Springs ERA

11/8/92

EVALUATION CRITERIA

- Timeliness
- Protectiveness
- Technical feasibility
- Institutional considerations
- Cost benefit considerations
- Environmental impacts

N Springs ERA

11/8/92

SCHEDULE

- ERA proposal to regulators 4/93
- ERA proposal for public review 6/93
- Action memorandum 7/93
- Begin implementing ERA 1994

6:11:6:22116

N Springs ERA

11/8/92

FEEDBACK?

APPROVAL TO PROCEED

THIS PAGE INTENTIONALLY LEFT BLANK

SODIUM DICHROMATE ERA EE/CA REVIEW SCHEDULE

The proposed Engineering Evaluation Cost Analysis (EE/CA) parallel review schedule (contingent on DOE-HQ approval) is:

November 9, 1992 - Issue Public Review Alert Notice RL/EPA/Ecology ten day review

November 18, 1992 - Release Sodium Dichromate EE/CA Proposal for public review

December 18, 1992 - All comments received by close of business

December 22, 1992 - All comments addressed Sodium Dichromate Proposal released

December 23, 1992 - Issue Action Memorandum

1

1

January 6, 1992 - If required, start cleanup activities

U.S. Environmental Protection Agency Washington State Department of Ecology U.S. Department of Energy

invite you to comment on the

Sodium Dichromate Expedited Response Action Proposal at the Hanford Site

The Sodium Dichromate ERA Proposal is an engineering evaluation and cost analysis of alternatives to remediate the ERA. The Sodium Dichromate ERA addresses the sodium dichromate barrel landfill located between the 100 D and H areas. The landfill is the sole waste site within operable unit 100-IU-4.

The 30-day public comment period is November 18 through December 18, 1992.

Under the Tri-Party Agreement and the Community Relations Plan, interested citizens have the opportunity to evaluate and comment on ERA proposals during a 30-day public comment period.

Copies of the document are available at:

U.S. Department of Energy--Richland Reading Room Federal Building Room 157 825 Jadwin Avenue Richland, WA 99352

For more information, or to send written comments, write to:

Mr. D. Goswami, Unit Manager Washington Department of Ecology 7601 W. Clearwater Suite 102 Kennewick, WA 99336

200 6

Table B-2. Sample Results (sheet 1 of 2)

SAMPLE No.	SAMPLE TYPE	LOCATION (Figure 2 and 11)	ANALYSIS RESU	LT
			Chromium + 6	Chromium
	Surface Soi	Samples Collected 7/15/92	(Cr+6)	(Cr)
			ppm	ppm
B018X7	Cr+6 Field Screening	Site B .	0.0	NR
B018X8	Cr+6 Field Screening	Site D. Camposite	0.0	NR
8018YO	Cr+6 Field Screening	Site I, Composite	0.0	NR
B018Y1	Cr+6 Field Screening	Site K & L, Composite	0.0	NR
B018Y2	Cr+6 Field Screening	Site O. Composite	0.0	NR
B018Y3	Cr+6 Field Screening	Site P. Composite	0.0	ия
B018Y4	Cr+6 Field Screening	Site Q, Composite	0.0	NR
BO18Y5	Cr+6 Field Screening	Site R, Composite	0.0	NA
B018Y6	Cr+6 Field Screening	Site S. Composite	0.0	NR
B018Y7	Cr+6 Field Screening	Site T, Composite	0.0	NR
B018Y8	Cr+6 Field Screening	Site W	0.0	NR
8018Y9	Cr+6 Field Screening	Site X	0.0 .	
B018Z0	Cr+6 Field Screening	West of Well Pad, Composite	0.0	NR
B01821	OFFSITE Lab	Site P	NR	11.60 *
B018Z2	OFFSITE Lab (Quality Assurance, QA)	BO18Z1 Duplicate	NR	15.50 *
B018Z3	OFFSITE Lab (QA)	BO18Z1 Split	NR	12.00
B018Z4	OFFSITE Lab (QA)	Equipment Blank	NR	0.92 *
	Background Surfa	ice Soil Samples Collected 8/24/92		
801825	OFFSITE Lab	50 ft. West N900 E500	<0.50	10.3
B018Z6	OFFSITE Lab	50 Ft. West N1500 E500	<0.50	11.2
B018Z7	OFFSITE Lab	50 ft. North N2020 E660	<0.50	10.4
B018Z8	OFFSITE Lab	50 ft, East N1500 E800	< 0.50	10.9
801829	OFFSITE Lab (QA)	Duplicate 8018Z5	< 0.50	10.9
B01900	OFFSITE Lab (QA)	Split 801825	<0.10	12.9
	Test Trend	h Samples collected 9/17/92		
801901	OFFSITE Lab (QA)	Equipment Blank	<0.50	0.7 •
B01902	OFFSITE Lab	Trench 1, South End, 2.5 ft. deep	< 0.50	12.1
B01903	OFFSITE Lab (QA)	B01902 Duplicate	1.32	15.1 *
801904	OFFSITE Lab (QA)	801902 Split	<0.10	18.0
801905	OFFSITE Lab	Trench 1, North End, 8 ft. deep	<0.50	27.8 *
B01906	OFFSITE Lab	Trench 2, West End, 7.5 ft. deep	<0.50	15.3 *
801907	OFFSITE Lab	Tranch 2, East End, 6 ft. deep	<0.50	11.0 *
B01908	Cr+6 Field Screening	Trench 1, South End, 1.5 ft. deep	0.98	14.4
801909	Cr+6 Field Screening	Trench 1, South End, 2.5 ft. deep	1.06	11.1
B01910	Cr+6 Field Screening	Trench 1, South End, 5 ft. deep	2.87	13.9
B01911	Cr+6 Field Screening	Trench 1, South End, 6 ft. deep	0.92	10.4
B01912	Cr+6 Field Screening	Mid-trench 1, 3 ft. deep	1.83	29.6
B01913	Cr+6 Field Screening	Trench 1, North End, 8 ft. deep	2.91	45.1
801914	Cr+6 Field Screening	Trench 2, West End, 3 ft, deep	1.91	38.9
B01915	Cr+6 Field Screening	Trench 2, West End, 7.5 ft. deep	3.73	56.3
801916	Cr+6 Field Screening	Mid-trench 2, 3 ft. deep	15.60	39.9
801917	Cr+6 Field Screening	Trench 2, East End, 6 ft, deep	1.02	10.0
B01918	Cr+6 Field Screening	Trench 2, East End, 4.5 ft. deep	0.0	11.4

Offsite Lab Gamma Spectrum measurements are at background radiation levels.

Table B-2. Sample Results (sheet 2 of 2)

SAMPLE No.	SAMPLE TYPE	LOCATION (Figure 2 and 11)	ANALYSIS RE	ANALYSIS RESULT		
GARRIEL MO.	<u> </u>		Chromium + 6	Chromium		
		Test Trench Samples Collected 9/24/92	(Cr+6)	(Cr)		
		(Repeat of samples 801912 through 801916)	ppm	ppm		
B01919 (B01916)	Cr+6 Field Screening	Mid-tronch 2, 3 ft. deep	0.87	<1.19		
B01920 (B01914)	Cr+6 Field Screening	Trench 2, West End, 3 ft. deep	1.89	<1.20		
B01921 (B01915)	Cr+6 Field Screening	Trench 2, West End, 7.5 ft. deep	0.93	<1.49		
B01922 (B01912)	Cr+6 Field Screening	Mid-trench 1, 3 ft. deep	0.87	<1.20		
B01923 (B01913)	Cr+6 Field Screening	Trench 1, North End, 8 ft. deep	2.91	<1.20		
		4	•			
		Test Pit Samples Collected 9/24/92				
801924	Test Pit OFFSITE Lab (QA) Equipment Blank	<0.50	0.96		
B01925	Test Pit OFFSITE Lab	6 ft. deep	< 0.10	4.4		
B01926	Tost Pit OFFSITE Lab (QA) B01925 Duplicate	< 0.50	٠ 7.8		
B01927	Tost Pit OFFSITE Lab (QA	A) B01925 Split	<0.50	7.0		